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CRYPTOGRAPHIC ALGORITHMS:PROPERTIES, DESIGN AND ANALYSIS �Josef PieprzykyDepartment of Computer Science,Centre for Computer Security Research,University of Wollongong,Wollongong, NSW 2500, AUSTRALIA,e-mail: josef@cs.uow.edu.auAbstractThe paper presents an overview of recent developments in the design of cryptographicalgorithms. A short historical introduction sheds a ray of light on some events which con-tributed to the advancement of cryptology. Modern cryptology is intimately tied up to thefundamental Shannon's work on secrecy systems. First modern cryptographic algorithms(Lucifer and DES) are discussed in terms of their impact on the next generation of conven-tional crypto-algorithms. Next algebraic structures of both conventional and conditionallysecure crypto-algorithms are investigated and an account of the results achieved is provided.Later provably secure crypto-algorithms are explored including pseudorandom bit genera-tors, one-way hashing and pseudorandom functions. The work concludes with the review ofmain results in the design of S-boxes.1 IntroductionSecret writing was probably the �rst widely used method for secure communication via insecurechannel. The secret text was invisible to an unsuspicious reader. This method of secure com-munication was rather weak if the document found its way to an attacker who was an expertin secret writing. Cryptology in its early years resembled very much secret writing { the well-known Caesar cipher [56] is an excellent example of concealment by ignorance. This cipher wasused to encrypt military orders. This time the ciphertext was not hidden but characters weretransformed using a very simple substitution. It was reasonable to assume that the cipher was\strong" enough as most of the potential attackers were illiterate and hopefully the rest thoughtthat the document was written in an unknown foreign language.It was quickly realized that the assumption about an ignorant attacker was not realistic. Mostearly European ciphers were designed to withstand attacks of educated opponents who knewthe encryption process but did not know the cryptographic key. Additionally it was requestedthat encryption and decryption processes could be done quickly usually by hand or with theaid of mechanical devices such as the cipher disk invented by Leon Battista Alberti [29]. At�Invited lecture, PRAGOCRYPT'96, the 1st International Conference on the Theory and Applications ofCryptology, September 30 - October 3, 1996, Prague, Czech RepublicySupport for this project was provided in part by the Australian Research Council under the reference numberA49530480 and the ATERB grant 1
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the beginning of the nineteenth century �rst mechanical-electrical machines were introduced for\fast" encryption. This was the �rst breakthrough in cryptography. Cryptographic operations(in this case encryption and decryption) could be done automatically with a minimal involvementof the operator. Cipher machines could handle relatively large volume of data. The GermanENIGMA and Japanese PURPLE are examples of cipher machines. They were used to protectmilitary and diplomatic information.The basic three rotor ENIGMA was broken by Rejewski, Rozycki and Zygalski, a team ofthree Polish mathematicians. Their attack exploited weaknesses of the operating procedure usedby the sender to communicate the settings of machine rotors to the receiver (see [14]). The Britishteam with Alan Turing at Bletchley perfected the attack and broke the strengthened �ve rotorENIGMA. Japanese PURPLE was broken due to the e�ort of Friedman [29]. These remarkablefeats were possible due to careful analysis of the cryptographic algorithms, predictable selectionof cipher machine parameters (bad operational procedures), and signi�cant improvement ofcomputational power. Cryptanalysis was �rst supported by application of the so-called cryptobombs which were copies of the original cipher machines used to test some of the possible initialsettings. Later cryptanalysts applied early computers to speed up computations.The advent of computers gave both the designers and cryptanalysts a new powerful toolfor fast computations. New cryptographic algorithms were designed and new attacks weredeveloped to break them. New impetus for Cryptology was not given by new designing toolsbut rather by new emerging applications of computers and new requirements for the protectionof information. Distributed computations and sharing information in computer networks areamong those new applications which demonstrated, sometimes very dramatically, the necessityof providing tools for reliable and secure information delivery. Recent progress in Internetapplications illustrates the fact that new services can be put on the net only after a carefulanalysis of their security features. Secrecy is no longer the most important security issue. In thenetwork environment, authenticity of messages and correct identi�cation of users became twomost important requirements.The scope of Cryptology has increased dramatically. It is now seen as the �eld which providesthe theory and a practical guide for the design and analysis of cryptographic tools which thencan be used to build up complex secure services. The secrecy part of the �eld, traditionallyconcentrated around the design of new encryption algorithms, was enriched by the addition ofauthentication, cryptographic hashing, digital signature and secret sharing schemes.The paper focuses on a small part of Cryptology namely the �eld of the design and analysisof cryptographic block algorithms. The aim of the work is to show di�erent aspects of the�eld and how they overlap and interrelate. We also point out possible future developments inthe area. Section 2 depicts main concepts and issues. Section 3 presents algebraic properties ofconventional and public-key crypto-algorithms. Provably secure crypto-algorithms are discussedin Section 4. Finally, the main results in the S-box theory are reviewed in Section 5.2 Modern Cryptographic AlgorithmsShannon in his seminal work [59] laid the theoretical foundations of modern cryptography.He used information theory to analyse ciphers. He de�ned the unicity distance in order tocharacterize the strength of a cipher against an opponent with unlimited computational power.He also considered the so-called product ciphers. Product ciphers use small substitution boxesconnected by larger permutation boxes. Substitution boxes (also called S-boxes) are controlledby a relatively short cryptographic key. They provide confusion (because of the unknown secretkey). Permutation boxes (P-boxes) have no key { their structure is �xed and they provide2
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di�usion. Product ciphers are also termed substitution-permutation (S-P) networks. As thedecryption process applies the inverses of S-boxes and P-boxes in the reverse order, decryptionin general cannot be implemented using the encryption routine. This is expensive in terms ofboth hardware and software.Feistel [22] used S-P network concept to design the Lucifer encryption algorithm. It encrypts128-bit messages into 128-bit cryptograms using 128-bit cryptographic key. The designers of theLucifer algorithm was able to modify the S-P network in such a way that both the encryptionand decryption algorithms could be implemented by a single program or a piece of hardware.Encryption (or decryption) is done in sixteen iterations (also called rounds). Each round actson 128-bit input (Li; Ri) and generates 128-bit output (Li+1;Ri+1) using 64-bit partial key Ki.A single round can be described asRi+1 = Li � f(Ri;Ki)Li+1 = Ri (1)where Li and Ri are 64-bit long sequences, f(Ri;Ki) is a cryptographic function which representsa simple S-P network. In literature, the transformation de�ned by (1) is referred to as the Feistelpermutation. Note that a round in the Lucifer algorithm always is a permutation no matter whatis the form of the function f(). Also the inverse of a round can use the original round routinewith the swapped input halves. The strength of the Lucifer algorithm directly relates to thestrength of the cryptographic function f(). Another interesting observation is that the structureof a single round has a \cryptographic ampli�cation" property { the design of a Lucifer-typecryptosystem is equivalent to the design of its f() function which operates on shorter sequences.The Data Encryption Standard (DES) was developed from Lucifer (see [62]) and very soonbecame a standard for encryption in banking and other non-military applications. It uses thesame Feistel structure with shorter 64-bit message/cryptogram blocks and shorter 64-bit key.As a matter of fact the key contains 56 independent and 8 parity-check bits. Due to its wide uti-lization, the DES was extensively investigated and analysed. Di�erential cryptanalysis inventedby Biham and Shamir [2] were �rst applied for the DES. Also linear cryptanalysis by Matsui[34] was �rst tested on the DES.The experience with the analysis of the DES gave a valuable insight into design properties ofcryptographic algorithms. Successors of the DES whose structure was based on Feistel permu-tation are amongst many Japanese Fast Encryption Algorithm (FEAL) [60] and the AustralianLOKI algorithm [8].Cryptographic hashing became an important component of cryptographic primitives espe-cially in the context of e�cient generation of digital signatures. MD4 and its more secure versionMD5 [50] are examples of the design which combines Feistel structure with C language bitwiseoperations for fast hashing. Although both MD4 and MD5 were shown to have security 
aws (seeDobbertin's attacks [19],[20]), their design principles were used to create more secure hashingalgorithms such as HAVAL [70].Both encryption and hashing algorithms can be designed using one-way functions. Theseconstructions are conditionally secure as the security of the algorithms depends upon the di�-culty of reversing the underlying one-way functions. This concept was articulated by Di�e andHellman in their visionary paper [18] in 1976. Soon after in 1978 two practical implementationsof public-key cryptosystems were published. Rivest, Shamir and Adleman [51] based their al-gorithm (RSA system) on two one-way functions: factorization and discrete logarithm. Merkleand Hellman [35] used the knapsack function. The Merkle-Hellman cryptosystem was brokensix years later by Brickell [7]The conventional approach to the design of cryptographic algorithms exploits Shannon S-Pnetworks. The outcome is always a single crypto-algorithm with a �xed security parameter3
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(the size of input or output). The DES is an example of a such design. Its security parameteris n = 64 (or n = 56). On the other hand, the number-theoretical (or conditionally secure)approach uses speci�c one-way functions. As the result of the design process in the number-theoretical approach, a family of cryptographic algorithms (with a variable size of its input andoutput) is produced. The RSA can be seen as a family of crypto-algorithms. The members canbe indexed by the modulus.Conventional cryptographic algorithms have a limited life time { an algorithm \dies" if theexhaustive attack 1 has become possible due to the progress in computing technology. Condi-tionally secure cryptographic algorithms are insensitive to the increment of computational powerof the attacker. It is enough to select larger security parameters for the algorithm and be surethat the algorithm is still secure.Note that the design and analysis of conditionally secure cryptographic algorithms have verystrong links with Complexity Theory and Number Theory. Surprisingly, some �elds of NumberTheory are now considered parts of Cryptology (for instance factorization algorithms, primalitytesting algorithms, etc.). To prove that a cryptographic algorithm based on one-way functionsis secure, it is enough to show that the attacker faces a computational problem from the classNP-P (see [25]) provided the well known open question: Is NP=P ? will not be answeredpositively (as then the class NP-P is empty).Brassard argues in [6] that if the quantum computer becomes a reality, a new complexityhierarchy will emerge with the discrete logarithm and factorization problems in the polynomial-time class.3 Algebraic Structures3.1 Conventional cryptographic algorithmsAn encryption algorithm should allow a user to select an encryption function from a large enoughcollection of all possible functions by a random selection of a cryptographic key. Note that for aplaintext/ciphertext block of the size n bits, the collection of all possible permutations contains2n! elements and is called the symmetric group. If we assume that the size of the key block isalso n bits, then the selection of permutations is restricted to 2n out of 2n! by random selectionof the key. To generate a random permutation e�ciently, it is enough to iterate simple (andpossibly insecure) permutations many times (S-P network). The single iteration is controlled bya short cryptographic key. Therefore the iteration has to be seen as a collection of permutationseach of which is indexed by the cryptographic key. The structure of iterations is crucial for thesecurity of the algorithm.Coppersmith and Grossman [15] studied iterations of basic permutations and their suitabilityto encryption. They de�ned the so-called k-functions. Each k-function along with its connectiontopology produces a single iteration permutation which can be used as a generator of otherpermutations by composing them. The authors proved that these generators produce at least thealternating group using a �nite number of their compositions. It means that using compositionand with generators of relatively simple structure, it is possible to produce at least half of allthe permutations. Even and Goldreich [21] proved that the DES-like connection topology alongwith k-functions (Feistel permutation) can also generate the alternating group.Consider a Feistel permutation described by Equation (1). The core cryptographic element isthe function g(Ri;Ki). Pieprzyk and Zhang [48] studied Feistel permutations with the functiong() restricted to one-to-one mappings. They proved that Feistel permutations with a one-to-one1In the case of encryption algorithms, this means that the secret key space can be exhaustively searched. Inthe case of hashing algorithms, this means that the birthday attack becomes viable.4
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function g() generate the alternating group. They showed that having (2n=2)! generators, it ispossible to produce (2n)!2 di�erent permutations.Bovey and Williamson reported in [5] that an ordered pair of generators can produce eitherthe alternating group AVn or the symmetric group SVn with the probability greater than 1 �exp(�log1=22n). So if we select the pair at random, there is a high probability that it generatesat least AVn.Feistel permutations are also applicable for hashing (with and without cryptographic key).Rivest [50] used them in the MD4 and MD5 hashing algorithms. The single iteration (thegenerator) is controlled by a message block Xi and is de�ned asGXi(A;B;C;D) = (B;C;D;A+Xi + g(B;C;D))where (A;B;C;D) is the initial vector input (A;B;C;D are 32-bit words),Xi is a 32-bit messageblock, and the function g() is a \mixing" S-box. The digestMD in MD5 is obtained by applying64 iterations so MD = GX15 � : : : �GX0| {z }64Tillich and Zemor based their SL2 hashing scheme on two generatorsA and B (see [63]). Assumethat � : f0; 1g ! fA;Bg which takes 0 to A and 1 to B. The digest of a binary message ofarbitrary length x1; : : : ; xk is the product �(x1)�(x2) : : : �(xk) in the SL(2;2n) group. Algebraicproperties of the SL2 hashing were investigated in [11], [12] and [26].3.2 Conditionally secure cryptographic algorithmsMost of the conditionally secure cryptographic algorithms use exponentiation as the basic op-eration. The base of the exponentiation is a generator which de�nes a single iteration. Theexponent speci�es the number of iterations. There are two types of exponentiation� Di�e-Hellman (DH) exponentiation (in GF (p)),� RSA exponentiation (in ZN ; N = p� q, where p and q are primes).Di�e and Hellman used exponentiation to design their public-key distribution scheme [18].Using it, two parties can establish a secret key via a public exchange of messages. An attackerwho has access to public channel, sees an integer y = gk (mod p). Knowing y and two publicelements: the generator g and the modulus p, the attacker wants to compute the secret integerk. In other words, they face an instance of the well-known discrete logarithm problem which isbelieved to be intractable [42].The DH exponentiation induces the multiplication group whose cycle is p�1. If p is a prime,the cycle p�1 has at least two factors 2 and one or more other primes - the multiplicative groupdecomposes into two or more subgroups. An interesting case is when p = 2n and the cyclep� 1 is a Mersenne prime. In this case any nonzero exponent has its inverse modulo p� 1. Asthe result, this type of DH exponentiation can be used to convert linear equations into theirexponent equivalents. This is useful if some of the elements need to be kept secret while stillbeing accessible for computations. (see [13]).In the DH exponentiation everybody knows the cycle of the multiplicative group { this isnot the case in RSA exponentiation. The public modulus N = p � q has two factors p and q.So the multiplicative group has the cycle 
(N) = lcm(p� 1; q � 1). As the primes p and q aresecret so is 
(N). Knowing C =M e (mod N), the holder of the factorization of N can recoverM by applying the exponent d so Cd = M e�d = M (mod N) and d � e = 1 (mod 
(N)).5
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The factorization of 
(N) de�nes the algebraic structure of the multiplicative group. If 
(N)contains many factors, there are many subgroups with short cycles. This leads to inheritedweaknesses such as the lack of concealment of messages (i.e. there is a substantial fraction ofelements for which M e =M (mod N) { see [3]) or vulnerability to the iteration attack [61].The RSA exponentiation may use a very short exponent (see for example [32]). This can bevery useful when the computing power of a party who applies the exponentiation is very limited(for example in smart cards).The knapsack problem belongs to theNP-complete class. So its di�culty is higher than thedi�culty of the discrete logarithm problem. Despite of this, very early application of knapsackfor encryption turned to be a failure. Knapsack is a good example that the use ofNP-completeproblems does not guarantee secure cryptographic algorithms. NP-complete characterizationof a problem is based on the existence of intractable instances. To get a secure crypto-algorithm,the designer has to prove that all instances employed in the algorithm (or in the worst caseoverwhelming majority) are intractable.What would happen if complexity theory proved that NP = P ? Although this resultlooks unlikely, it is not unreasonable to consider some possible repercussions for Cryptology.The immediate consequence is that all crypto-algorithms based on NP problems would beinsecure. The way out would be to design crypto-algorithms using problems whose complexityis higher than NP. The class of undecidable problems could be of a special signi�cance. Theirintractability is especially strong. There is no algorithm which solves an undecidable problem.Wagner and Magyarik [64] suggested the word problem in groups (this problem is undecidable)to design public-key crypto-algorithm.4 Provably Secure ConstructionsCrypto-algorithms use relatively simple transformations which are repeated many times duringthe cryptographic process. The selection of building blocks is to some extent arbitrary. Allconventional crypto-algorithms without exceptions were designed without formal proof of theirsecurity. Even worse, as conventional crypto-algorithms have their parameters �xed for their life-time, any progress in computing technology tends to weaken them. To keep up with the progressin computing, it is necessary to design an in�nite family of crypto-algorithms whose membersare indexed by security parameters such as the length of message block. This approach hasbeen already adopted in public-key algorithms. So for example, the RSA algorithm is immuneagainst progress in computing technology. On the other hand, the RSA and other public-keyalgorithms are considered to be secure because the underlying one-way function is believed tobe intractable. If the underlying function is proved to belong the class P, the system which usesit is insecure. All public-key algorithms are sensitive to progress in Complexity Theory2.A solution to this dilemma would be to design algorithms whose constructions are basedon the assumption of existence of one-way function only. Even if it turned out that P=NP,the crypto-algorithms would be still secure. The only necessary modi�cation would be thesubstitution of the compromised no-longer-one-way function by a new one-way function.4.1 Pseudorandom Bit GeneratorsYao in [66] considered the following scenario. Assume that we have two di�erent bit generatorsS = fSn j n = 1; 2; : : :g and S 0 = fS0n j n = 1; 2; : : :g. Each generator is a collection ofinstances indexed by the size of the output n. One of them, say S, produces bits randomly2New computing tools like quantum computers will certainly extend the class P.6
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with uniform probability. The other S 0 generates bits using a probabilistic polynomial timealgorithm. An observer who has access to the output of one of the generators, tries to identifyit. The observer uses a probabilistic polynomial-time algorithm called the distinguisher. Thedistinguisher collects large enough (but polynomial-size) sample of output bits and makes adecision: either \0" (the tested generator is S) or \1" (the tested generator is S 0).We say that a distinguisher C = fCn j n = 1; 2; : : :g is able to distinguish S from S 0 if thereis an in�nite sequence of indices n = n1; n2; : : : for which the distinguisher instance Cn can tellapart Sn from S 0n with an arbitrary high probability using polynomial size of observed bits.From a cryptographic point of view, a bit generator which is distinguishable from trulyrandom one is insecure. Yao [66] proved that if a bit generator is indistinguishable from thetruly random one, then the generator passes the next bit test and vice versa. It is said that agenerator passes the next bit test if knowing a polynomial size of output bits of the generator,it is impossible to predict (using a probabilistic polynomial-time algorithm) the next bit betterthen by 
ipping an unbiased coin.A bit generator which is indistinguishable from a truly random source (or equivalently passesthe next bit test) is called pseudorandom. Levin [31] proved that there is a pseudorandom bitgenerator (PBG) if there exists a one-way function. Blum and Micali gave a construction for aPBG from a one-way function (see [4]).4.2 Hard BitsPseudorandom generators yield a sequence of bits each of which is indistinguishable from therandom bit. They are called the hard bits. A typical one-way function contains a mixture ofeasy-to-compute and other bits. The other bits usually cannot be distinguished from \biased"random bits. Goldreich and Levin [28] noted that hard bits concentrate the one-wayness of thefunction. They showed how to build a hard-core predicate for one-way functions and provedthat it is always possible to extract O(logn) hard bits from any one-way function. If the numberof hard bits needs to be larger, then a one-way function needs to be used as a building block inmore complex constructions (see [55]).4.3 One-way HashingHashing is a cryptographic algorithm that creates an unforgeable �ngerprint (or digest) of amessage. Unforgeability means that it is computationally infeasible to �nd messages with thesame digest. If two messages have the same digest, they are said to collide. Hashing algorithmscan be divided into two categories: collision-free hash functions (or strong one-way hash func-tions) and one-way hash functions (or weak one-way hash functions). A strong one-way hashfunction h() is a function which (1) can be applied to a message of arbitrary size, (2) producesa �xed size output, (3) given the message M and the description of h(), it is easy to computeh(M), (4) it is computationally intractable to �nd two distinct messages which hash to the samedigest. A weak one-way hash function di�ers from a strong one in point (4) which should berephrased as (4') given a randomly chosen message M , it is computationally infeasible to �nd acolliding message M 0 such that h(M) = h(M 0).More precisely, H is a family of hash functions H = fHn j n 2 Ng where N is the setof natural numbers and Hn : �l(n) ! �n. l(n) is a monotone increasing function N ! N .Let F be a collision �nder. F is a probabilistic polynomial time algorithm such that in inputx 2 �l(n) and h 2 Hn outputs either \?" (cannot �nd) or a string y 2 �l(n) such that x 6= yand h(x) = h(y). A formal de�nition of a universal one-way hash function (UOWHF) can be asfollows. 7
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Let H be a computable and accessible hash function compressing l(n)-bit input into n-bitoutput strings and F be a collision string �nder. H is a universal one-way hash function if foreach F , and for each polynomial Q and for all su�ciently large n,ProbfF (x; h) 6=?g < 1Q(n)where x 2 �l(n) and h 2r Hn. The probability is computed over all h 2 Hn, x 2 �l(n) and therandom choice of all �nite strings that F could have chosen.A strong one-way hash function was de�ned by Damgard [16]. Note that in this case the�nder is not given any input message. H is called a collision free hash function if for each F ,and for each polynomial Q, and for all su�ciently large n,ProbfF (h) 6=?g < 1Q(n)where h 2 Hn, and the probability ProbfF (h) 6=?g is computed over all h 2 Hn and the randomchoice of all �nite strings that F could have chosen.Naor and Yung [36] introduced the concept of UOWHF and suggested a construction basedon one-way permutations. Their construction is based on a UOWHF which compresses a singlebit. Also they argued that the existence of secure signature scheme reduces to the existenceof a UOWHF. Rompel [52] managed to design a UOWHF from any one-way function. Zheng,Matsumoto and Imai observed [69] that there is a duality between PBG and UOWHF. Theypresented a construction of UOWHF from Blum-Micali pseudorandom bit generators. For moredetails see [45].Zheng, Hardjono and Pieprzyk [67] used UOWHFs to build a family of one-way functionswhich are polynomial-time computable and they have the collision accessibility property. Thesibling intractable function family (k-SIFF) allows the design of functions with k colliding inputstrings. Note that �nding more than k collisions amounts to the ability to reverse the underlyingUOWHF.4.4 Pseudorandom FunctionsA function generator is a collection of functions with two properties: indexing and polynomialtime evaluation. Let l(n) be a polynomial in n, a function generator F = fFn j Fn : �n !�n; n 2 Ng is a collection of functions with the following properties:� Indexing: Each Fn speci�es for each k of length l(n) a function fn;k 2 Hn where Hn is theset of all functions from �n to �n.� Polynomial-time evaluation: Given a key k 2 �l(n), and a string x 2 �n, fn;k(x) can becomputed in polynomial time in n.A pseudorandom function generator is a function generator that cannot be distinguishedfrom a truly random one. In other words, it is a collection of functions on n-bit strings thatcannot be distinguished from the set of all functions on n-bit strings. To determine whether acollection of functions can be distinguished from the set of all functions, distinguishing circuitsfor functions are used, which are similar to distinguishing circuits for bit generators but are morepowerful. They can be modeled by oracle circuits. The exact de�nitions of oracle circuits anddistinguishing circuits for functions and pseudorandom function generators can be found in [27]and [45]. Goldreich, Goldwasser and Micali [27] were able to construct a pseudorandom functiongenerator, given a pseudorandom bit generator which stretched an n-bit seed to a 2n-bit string.8
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4.5 Pseudorandom PermutationsPseudorandom permutation generator (a family of permutations) cannot be distinguished fromtruly random permutations by any probabilistic polynomial time algorithm. Permutation gen-erators can be designed using di�erent building blocks such as one-way permutations, pseudo-random functions, etc. A construction based on a one-way permutation was given in [55].Assume that we de�ne the DES-type permutation asD2n;f(LkR) = (R� f (L)kL)where R and L are n-bit strings and k stands for concatenation of two strings. Having a sequenceof functions f1; : : : ; fi, we can de�ne the composition of their DES-type permutations as (f1; : : : ; fi) = D2n;fi � : : : �D2n;f1where fj : �n ! �n; j = 1; : : : ; i and � = f0; 1g. Luby and Racko� [33] showed that  (f1; f2; f3)is pseudorandom family of permutations (the index n speci�es the member of the family) iff1; f2; f3 are three independent pseudorandom functions. Ohnishi [43] improved their resultsand demonstrated that both  (f; f; g) and  (f; g; g) are pseudorandom if f and g are twodi�erent pseudorandom functions. Zheng, Matsumoto and Imai [68] gave construction for adistinguisher for any generator of the form  (fk; f i; fk) proving that it is impossible to designpseudorandom permutations using three rounds of DES with a single pseudorandom function f(fk means the composition of the function k times). Pieprzyk [46] proved that  (f; f; f; f i) ispseudorandom (i � 2) if f is pseudorandom function.As before the distinguisher is a probabilistic polynomial time algorithm which can query thetested generator about cryptograms (ciphertext) for chosen messages (plaintext). This processis implemented by so-called normal oracle gates. In other words, pseudorandom permutationsare secure against the chosen plaintext attack.4.6 Super Pseudorandom PermutationsThe distinguisher can be made more powerful by allowing it to query not only about ciphertextfor chosen plaintext but also about plaintext for a chosen ciphertext. In this case, the distin-guisher has two kinds of oracle gates: normal oracle gates (to query about ciphertext) and inverseoracle gates (to query about plaintext). The total number of queries has to be polynomial in n(n indexes instance generator and corresponding instance distinguisher).If a permutation generator cannot be distinguished from the truly random one by any prob-abilistic polynomial time distinguisher with normal and inverse oracle gates, then it is calledsuper pseudorandom. Luby and Racko� [33] proved that  (e; f; g; h) is super pseudorandom aslong as e; f; g; h are di�erent pseudorandom functions. Using two pseudorandom functions f; g,it is possible to get a super pseudorandom permutation  (f; f; g; g). Sadeghiyan and Pieprzyk[54] showed that the generator  (f; 1; f2; f; 1; f2) based on a single pseudorandom function, issuper pseudorandom.5 S-box TheoryThe design of a good cryptographic algorithm of the DES structure is equivalent to the designof a single random function f . The number of necessary iterations is at least six (four iterationswith f and two with the identity permutation). Consider a random function f = ffk : �n !�n; k 2 GF (22n)g. For any instance of the key k, there should be an instance of a random9
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function fk . To store all the 22n instances of random function, it is necessary to store 2n � 22nn-bit strings. This is impractical even for small n.As the function f is requested to be fast and to be implementable with a limited memory, ithas to be non-random. Now we face some questions. How to assess the quality of the functionf when we have already assumed that it fails most of the statistical tests ? Which tests arecrucial to ensure that the function f captures \typical features" of random functions so as theresulting algorithms will be fast and cryptographically strong ?The DES was the �rst cryptographic algorithm that was extensively scrutinized by theinternational community. It is still a good example of how to design a relatively strong algorithmfrom a non-random function f(). The function f() was built using a collection of eight S-boxesconcatenated by the P -box (S-P network). Although the DES algorithm was made public, thecollection of tests used to select S-boxes and the P -box was never revealed. The collection oftests is equivalently referred in the literature as the design criteria/properties. It took a lot ofe�ort by the international community to identify some of the design criteria. A summary of theidenti�ed design properties used during the design of S-boxes and the P-box can be found in [9]and [40].S-box design criteria can be de�ned using the information theory concept of mutual infor-mation. This approach was applied by Forre in [23] and Dawson and Tavares in [17]. Theyargued that the mutual information between inputs and outputs of S-boxes should be as smallas possible.5.1 Design CriteriaThe list of S-box design criteria usually includes(1) balancedness,(2) nonlinearity,(3) strict avalanche criterion (SAC),(4) higher-order SAC or propagation criterion and(5) completeness.Balancedness guarantees that S-boxes do not discriminate against any speci�c bit \0" or \1". S-boxes must not be a�ne or close to a�ne functions. The nonlinearity of a function f : �n ! �is de�ned as the Hamming distance between the function and the set of all a�ne functions[44]. The concept of nonlinearity can be extended to measure nonlinearity of arbitrary functionsf : �n ! �m including permutations (n = m) (see [47],[38],[58]). Strict Avalanche Criterionor SAC was introduced by Webster and Tavares [65]. A function f : �n ! �m satis�es theSAC if f(x � �) is balanced for all x 2 �n and for all � whose weight is \1" (wt(�) = 1). Inother words, it characterizes the number of output bits which change their values in responseto a single input bit change. Higher order SAC is a generalization of the SAC property. BothSAC and higher order SAC can be collectively called propagation criteria ([1],[49]). A functionf : �n ! �m satis�es a propagation criterion of degree k if f(x� �) is balanced for all x 2 �nand for all � whose weight is k (wt(�) = k). Completeness was de�ned by Kam and Davida[30] to characterize S-P network complexity - it requires each output to be dependent upon anyinput.Additional useful design criteria are:(6) linear nonequivalence, 10
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(7) short algebraic normal forms,(8) good XOR pro�le.The collection of functions F = ff1; : : : ; fng (where each fi : �n ! �) is linearly nonequivalentif there is no a�ne transformation which converts a function fi into fj (i 6= j) [10]. Therequirement about a short algebraic normal form of a function becomes very important whenthe function is too big to be stored as the lookup table. In this case the output values of thefunctions are generated on the 
y - the shorter the function is the quicker is evaluated (seehashing algorithms). Di�erential cryptanalysis [2] prompted a new general design criterion -a \good" XOR pro�le. A function f : �n ! �m has a good XOR pro�le if for any �xed �,f(x) � f(x � �) takes on 2m�1 values each 2n�m+1 times while the rest of 2m�1 values haveempty entries (x 2 �n).5.2 Relation amongst S-box Design CriteriaIn general, it is impossible to design a S-box which will meet the above criteria. For instance,bent functions have the maximum nonlinearity but are not balanced. To get a workable design,it is necessary to specify which criteria are crucial and what tradeo� is acceptable amongstthem. The designer must also consider how S-boxes will be implemented. The implementationrestrictions usually in
uence the size of S-boxes. Note that for some small sizes there existsno reasonable design. For instance any (2 � 2) S-box with balanced functions is always a�ne.In general, the bigger size of the S-box input n the more 
exibility is possible in the tradeo�amongst di�erent criteria.Balancedness is a criterion which must be satis�ed unconditionally. Note that the nonlin-earity of balanced functions is always smaller than the nonlinearity of bent functions whichattain the maximum nonlinearity and satisfy SAC [53]. The tradeo� between nonlinearity andthe propagation criterion (including the SAC) for balanced functions is discussed in [57] and[58]. Charnes and Pieprzyk [10] studied the relation between the nonlinearity and the linearnonequivalence. They showed that it is not possible to select �ve balanced, SAC satisfying, lin-ear nonequivalent functions in �ve boolean variables without reduction of nonlinearity. Nyberg[37] discussed how to design S-boxes for which any linear combination of their outputs is a bentfunction, any output function has high nonlinearity and satisfy SAC, and additionally S-boxesare immune to di�erential cryptanalysis (have a good XOR pro�le).5.3 New Trends in S-box DesignOne may argue that S-boxes can be generated at random. The selected S-boxes can thenbe veri�ed against a collection of the S-box criteria. O'Connor [41] analysed a class of suchalgorithms and concluded that they are infeasible for relatively small sizes of S-boxes. Systematicdesign of S-boxes is a growing area of the S-box theory (see for example [37],[57]). It producesa single \good" S-box.There is a trend to design a family of crypto-algorithms with a security parameter n insteadof a single algorithm for �xed n. The parameter n usually speci�es the size (in bits) of the inputand output. To claim that some security features hold for the whole family of algorithms, weneed to know how to design a family of good S-boxes whose properties are \regular" and canbe approximated from the S-box properties for small n. An important advantage of families ofcrypto-algorithms is that their security can be extensively tested for small n.An universal S-box S can be de�ned as a family of S-boxes, i.e. S = fSn j n = n1; n2; : : :gwhere n1; n2; : : : is an in�nite sequence of \acceptable" parameters. It is important to be able to11
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assess the tradeo� of design criteria for arbitrary n. The designers of the LOKI algorithm (see [8])used exponentiation in GF (28) to generate the S-boxes whose structure can be changed to makea private copy of the algorithm. Pieprzyk [47] proved that cubing and other related exponentpermutations have high nonlinearity and their properties can be characterized for arbitraryn. Exponentiation can be a good source of universal S-boxes (see also [39]). In general, anypolynomial f(x) = xa+ : : :+ b1x+ b0, or any function (for example f(x) = gx) which generatesa permutation can be a potential candidate for a good universal S-box. The di�cult part is toprove to what degree the requested criteria are satis�ed.Universal S-boxes can also be used to accommodate cryptographic keys as a part of theirinput. The resulting S-box behaves as a S-box with a variable structure (which depends on thekey).6 ConclusionsThere are the following classes of crypto-algorithms:(1) conventional crypto-algorithms (security parameters are �xed),(2) families of crypto-algorithms. (security parameters specify an instance),(3) conditionally secure crypto-algorithms (such as public-key crypto-algorithms). The al-gorithm is based on a speci�c one-way function. An instance of the algorithm can beidenti�ed by the security parameter (like the modulus in the RSA),(4) provably secure crypto-algorithms. These algorithms do not apply any speci�c one-wayfunction.S-box theory supports the design of crypto-algorithms from the classes (1) and (2). We haveachieved an impressive progress in the design of single S-boxes. The author believes that thefuture work in S-box theory will address the problem of S-box design for the class (2). So thedesign of universal S-boxes seems to be the next step in advancement of the S-box theory.In classes (3) and (4), One-way functions play the role of S-boxes. Note that all provablysecure constructions (4) work under the assumption that there is a one-way function. Thereshould be no surprise that most of algorithms in the class (4) are not very e�cient - one hasto sacri�ce e�ciency to gain generality (the constructions have to work for arbitrary one-wayfunctions!).Unfortunately, the collection of the known one-way functions is quite modest. Therefore,looking for new one-way functions seems to continue. At the same time, the known one-wayfunctions can be used to produce one-way functions satisfying some security requirements. Howto immunize public-key against some speci�c attacks, is an example of such research [24].ACKNOWLEDGMENTThe author thanks Chris Charnes, Rei Safavi-Naini, and Xian-Mo Zhang for their criticalcomments and discussions on the paper.References[1] C. Adams and S. Tavares. The structured design of cryptographically good S-boxes. Journal of Cryptology,3:27{41, 1990.[2] E. Biham and A. Shamir. Di�erential cryptanalysis of DES-like cryptosystems. Journal of Cryptology,4(1):3{72, 1991. 12
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